Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Московский государственный университет имени М.В. Ломоносова Геологический факультет

Москва

УТВЕРЖДАЮ
и.о. декана Геологического факультета
члкорр. РАН/Н.Н.Ерёмин/
<u>«</u> »201
РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ
Прикладные аспекты компьютерного моделирования в геодинамике
Автор-составитель: Захаров В.С.
Уровень высшего образования:
Магистратура
Направление подготовки:
05.04.01 Геология
Направленность (профиль) ОПОП:
Геотектоника и геодинамика
A . C
Форма обучения:
Очная
Рабочая программа рассмотрена и одобрен
Учебно-методическим Советом Геологического факультет
(протокол №

Рабочая программа дисциплины (модуля) разработана в соответствии с самостоятельно

установленным МГУ образовательным стандартом (ОС МГУ) для реализуемых основных

профессиональных образовательных программ высшего образования по направлению

подготовки «Геология» (программы бакалавриата, магистратуры, реализуемых

последовательно по схеме интегрированной подготовки).

© Геологический факультет МГУ имени М.В. Ломоносова

другими вузами без разрешения факультета.

Год (годы) приема на обучение: 2022

2

Программа не может быть использована другими подразделениями университета и

Цель и задачи дисциплины

Цель: углубление знаний о компьютерном моделировании, принципах и методах и особенностях этого вида моделирования в геодинамике.

Задачи: развить у студентов представления о геологических процессах с точки зрения действующих сил и энергий, углубить знания о методах построения компьютерных моделей в геодинамике; развить практические навыки компьютерного моделирования.

Краткое содержание дисциплины (аннотация):

В курсе рассматривается приближение сплошной среды для задач геодинамики, основы метода конечных разностей (МКР), деформации и напряжения, закон теплопередачи, численное решение уравнения теплопроводности, приближение вязкой среды, численное решение уравнений движения, уравнение адвекции и его численное решение. Рассматривается метод маркеров в ячейках для численного моделирования в геодинамике.

- **1. Место** дисциплины (модуля) в структуре $O\Pi O\Pi$ относится к вариативной части $O\Pi O\Pi$, является дисциплиной по выбору.
- **2.** Входные требования для освоения дисциплины (модуля), предварительные условия: базируется на знаниях по дисциплинам «Высшая математика», «Физика», «Геотектоника», «Физика Земли», «Основы математического моделирования», «Геодинамика и математическое моделирование», «Компьютерное моделирование геодинамических процессов», «Основы механики сплошной среды для геологических исследований».

3. Планируемые результаты обучения по дисциплине (модулю), соотнесенные с требуемыми компетенциями выпускников.

Компетенции	Индикаторы	Планируемые результаты обучения по	
выпускников (коды)	(показатели)	дисциплине (модулю), сопряженные с	
	достижения компетенциями		
	компетенций		
ОПК-6.М Способен	М.ОПК-6. И-1.	Знать: основы приближения сплошной	
использовать	Выбирает способы	среды, основы методов тепло- и	
современные	обработки данных и	массопереноса в геодинамике, знать	
вычислительные	программные	основные этапы моделирования; принципы	
методы и	средства для	построения моделей.	
компьютерные	решения задач	Уметь: под руководством преподавателя	
технологии для	профессиональной	выбрать теоретическую модель и	
решения задач	деятельности с	численный метод, провести компьютерное	
профессиональной	учетом основных	моделирование для решения базовых	
деятельности	требований	геодинамических задач	
(формируется	информационной	Владеть: навыками использования	
частично).	безопасности	основных методов моделирования для	
		решения геодинамических задач	

- **4. Объем дисциплины (модуля)** составляет **2** з.е., в том числе **39** академических часов на контактную работу обучающихся с преподавателем (лекции и семинары вместе), **33** академических часа на самостоятельную работу обучающихся. Форма промежуточной аттестации –зачет.
- **5. Формат обучения** не предполагает электронного обучения и использования дистанционных образовательных технологий (за исключением форс-мажорных обстоятельств пандемии и т.п.)

6. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических или астрономических часов и виды учебных занятий

Наименование и краткое	Всего	В том числе								
содержание разделов и тем дисциплины (модуля), Форма промежуточной	(часы)	Контактная работа (работа во взаимодействии с преподавателем) Виды контактной работы, часы			Самостоятельная работа обучающегося Виды самостоятельной работы, часы					
аттестации по дисциплине (модулю)		Занятия лекционного типа	Занятия лабораторного типа	Занятия семинарского типа	Всего	Расчетно- графические работы	Работа с литературой (включая подготовку доклада)	Подготовка реферата	Подготовка к контрольному опросу	Всего
Раздел 1. Введение	2	2			2					
Раздел 2. Приближение сплошной среды для задач геодинамики.	9	2		2	4	5				5
Раздел 3. Основы метода конечных разностей.	13	2		4	6	7				7
Раздел 4. Решение уравнения теплопроводности.	16	3		6	9	7				7
Раздел 5. Решение уравнений движения.	17	4		6	10	7				7
Раздел 6. Решение уравнения адвекции.	13	2		4	6	7				7
Промежуточная аттестация зачет	2			2			•			
Итого	72		3	19				33		

Содержание лекций, семинаров Содержание лекций

Раздел 1. Введение. Необходимость и востребованность численного моделирования в геодинамике. Представление результатов моделирования, визуализация. Приближение сплошной среды для задач геодинамики. Основы механики сплошной среды. Упругая, вязкая, пластическая среда, основные соотношения. Базовые уравнения механики сплошной среды: уравнение неразрывности для несжимаемой жидкости, уравнение Пуассона, их применение для геодинамического моделирования. Граничные и начальные условия, разные виды.

Раздел 3. Основы метода конечных разностей. Численные методы решения дифференциальных уравнений. Понятие о методе конечных разностей (МКР). Дискретизация области определения, построение сетки, представление производных в конечных разностях. Построение разностных аналогов уравнений. Сходимость и устойчивость разностных схем, погрешность аппроксимации. Сведение к системе алгебраических уравнений, методы их решений. Конечные разности на разнесенной сетке. Численное решение уравнения неразрывности и Пуассона методом конечных разностей. Раздел 4. Решение уравнения теплопроводности. Уравнение теплопроводности, его геодинамические применения. Представление уравнения теплопроводности в конечных разностях. Консервативные и неконсервативные разностные схемы. Явные и неявные схемы численного решения, их преимущества и недостатки. Граничные условия первого, второго рода и смешанные, их численное представление в конечных разностях. Численное решение уравнения теплопроводности, практическая реализация. Геодинамические приложения решения задачи теплопроводности.

Раздел 5. Решение уравнений движения. Двумерное уравнение движения вязкой жидкости. Уравнение Навье-Стокса. Течение очень вязкой несжимаемой жидкости. Уравнение Стокса, его применение в вычислительной геодинамике. Дискретизация уравнения Стокса, применение разнесенной сетки. Система локальных и глобальных индексов, применяемых при дискретизации. Сведение к системе линейных уравнений с разряженной матрицей. Граничные условия, их виды и представление в дискретном виде. Раздел 6. Решение уравнения адвекции. Понятие об адвекции. Двумерное уравнение адвекции. Методы решения уравнения адвекции. Эйлеров и Лагранжев подход к решению. Метод лагранжевых маркеров (частиц) в ячейках для описания движения вещества. Дискретизация уравнения на разнесенной сетке. Интерполяция значений переменных и параметров между маркерами и узлами сетки. Сведение к системе линейных уравнений с разряженной матрицей. Численное решение уравнения адвекции. Геодинамические приложения.

План проведения семинарских занятий:

- 1. Приближение сплошной среды для задач геодинамики.
- 2. Численное решение уравнения неразрывности и Пуассона.
- 3. Численное решение уравнения теплопроводности.
- 4. Численное решение уравнений движения.
- 5. Численное решение уравнений адвекции.

7. Фонд оценочных средств (ФОС) для оценивания результатов обучения по дисциплине (модулю)

7.1. Типовые контрольные задания или иные материалы для проведения текущего контроля успеваемости.

Текущий контроль усвоения дисциплины осуществляется при контрольных опросах.

Примерный перечень вопросов для текущей аттестации:

- 1. Приближение сплошной среды для задач геодинамики.
- 2. Упругая, вязкая, пластическая среда, основные соотношения.
- 3. Основные положения метода конечных разностей.
- 4. Уравнение неразрывности и уравнение Пуассона
- 5. Метод численного решения уравнения Стокса.
- 6. Явные и неявные схемы численного решения уравнения теплопроводности.
- 7. Геодинамические приложения решения задачи теплопроводности.
- 8. Эйлеров и Лагранжев подход к решению уравнения адвекции.
- 9. Метод маркеров в ячейках в вычислительной геодинамике.
- 10. Численное решение уравнения адвекции.

7.2. Типовые контрольные задания или иные материалы для проведения промежуточной аттестации.

Примерный перечень вопросов при промеж ут очной ат т ест ации (зачет е):

- 1. Приближение сплошной среды для геологической среды.
- 2. Упругая, вязкая, пластическая среда, основные соотношения.
- 3. Уравнение неразрывности для несжимаемой жидкости.
- 4. Уравнений Пуассона.
- 5. Граничные и начальные условия, разные виды.
- 6. Численные методы решения дифференциальных уравнений.
- 7. Конечные разности на разнесенной сетке.
- 8. Система локальных и глобальных индексов, применяемых при дискретизации.
- 9. Основные уравнения движения сплошной среды, дать анализ их применимости.
- 10. Уравнение Навье-Стокса и Стокса.
- 11. Методы дискретизации уравнений движения.
- 12. Система локальных и глобальных индексов, применяемых при дискретизации.
- 13. Уравнение теплопроводности, его геодинамические применения.
- 14. Описать основные способы теплопередачи, основные уравнения.
- 15. Явные и неявные схемы численного решения, их преимущества и недостатки.
- 16. Дискретизация уравнения теплопереноса.
- 17. Численное решение уравнения теплопроводности.
- 18. Эйлеров и Лагранжев подход к решению.
- 19. Уравнение адвекции и методы его дискретизации.
- 20. Методы решения уравнения адвекции.

Шкала и критерии оценивания результатов обучения по дисциплине (зачет).

Оценка результатов	Незачет	Зачет
обучения,		
соответствующие виды		
оценочных средств		
Знания (устный опрос)	Фрагментарные знания или	Сформированные
основы приближения	отсутствие знаний	систематические знания или
сплошной среды, основы		общие, но не
методов тепло- и		структурированные знания
массопереноса в		
геодинамике, знать		
основные этапы		
моделирования; принципы		

построения моделей		
Умения (устный опрос)	В целом успешное, но не	Успешное и
выбирать теоретическую	систематическое умение или	систематическое умение или
модель и численный метод,	отсутствие умений	в целом успешное, но
проводить компьютерное		содержащее отдельные
моделирование для решения		пробелы умение (допускает
базовых геодинамических		неточности
задач		непринципиального
		характера)
Владения (устный опрос)	Наличие отдельных навыков	Сформированные навыки
навыками использования	или отсутствие навыков	(владения), применяемые
основных методов		при решении задач или, в
моделирования для решения		целом, сформированные
геодинамических задач		навыки (владения), но
		используемые не в активной
		форме

8. Ресурсное обеспечение:

А) Перечень основной и дополнительной литературы.

- основная литература:

- 1. Теркот Д., Шуберт Дж. Геодинамика. В 2-х т. М.: "Мир", 1985. 730 с. (печатная в Библиотеке МГУ, электронная в кафедральном фонде).
- 2. Харбух Д., Бонэм-Картер Г. Моделирование на ЭВМ в геологии. М.: "Мир", 1974. 319 с. (печатная в Библиотеке МГУ, электронная в кафедральном фонде).
- 3. Хаин В.Е., Ломизе М.Г. Геотектоника с основами геодинамики. М.: КДУ, 2010. 559 с. (печатная в Библиотеке МГУ, электронная в кафедральном фонде).

- дополнительная литература:

- 1. Андерсон Д., Таннехилл Д., Плетчер Р. Вычислительная гидромеханика и теплообмен. В 2-х т. М.: Мир, 1990. (печатная в Библиотеке МГУ, электронная в кафедральном фонде).
- 1. Надаи А. Пластичность и разрушение твердых тел. В 2-х т. М., Мир, 1969. (печатная в Библиотеке МГУ, электронная в кафедральном фонде).
- 2. Реология. Теория и приложения. Под ред Ф.Эйриха. М.: Изд. иностр. лит., 1962. 824 с. (печатная в Библиотеке МГУ, электронная в кафедральном фонде).
- 3. Тихонов А.Н., Самарский А.А. Уравнения математической физики. М.: Наука, 1999. 798 с. (печатная в Библиотеке МГУ, электронная в кафедральном фонде).
- 4. Gerya T.V. Introduction to numerical geodynamic modelling. 2nd edition. New York: Cambridge University Press. 2019, 472 р. (электронная в кафедральном фонде).
- 5. Ismail-Zadeh A., Tackley P.J. Computational Methods for Geodynamics. New York: Cambridge University Press. 2010. 313 р. (электронная в кафедральном фонде).
- 6. Turcotte D.L., Schubert G. Geodynamics. 3nd eds. Cambridge: Cambridge University Press. 2014. 626 р. (электронная в кафедральном фонде).

Б) Перечень программного обеспечения:

- лицензионное

нет

- нелицензионное и свободного доступа

язык программирования Python, пакет программ Open Office

В) Перечень профессиональных баз данных и информационных справочных систем:

- реферативная база данных издательства Elsevier: www.sciencedirect.com
- U.S. Geological Survey. www.usgs.gov.

- Computational Infrastructure for Geodynamics (CIG). https://geodynamics.org/.
- Справочная система языка программирования Python 3. https://www.python.org/doc/.

Г) Перечень ресурсов информационно-телекоммуникационной сети «Интернет»

- поисковая система научной информации www.scopus.com
- электронная база научных публикаций www.webofscience.com
- язык программирования Python 3. https://www.python.org/download/releases/3.0/.
- среда разработки программ PyCharm. https://www.jetbrains.com/ru-ru/pycharm/.
- интерактивная оболочка Jupyter Notebook. https://jupyter.org/.
- пакет Anaconda. https://www.anaconda.com.
- редактор Notepad++. https://notepad-plus-plus.org/downloads/.

Д) Материально-технического обеспечение:

Учебная аудитория с мультимедийным проектором Компьютерный класс.

- 9. Язык преподавания русский.
- **10. Преподаватель (преподаватели):** Ответственный за курс Захаров В.С. (сотрудник кафедры динамической геологии), преподаватели: Захаров В.С.
- 11. Разработчики программы: профессор Захаров В.С.